Manifold Regularization for SIR with Rate Root-n Convergence

نویسندگان

  • Wei Bian
  • Dacheng Tao
چکیده

In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projection directions of the regularized SIR are optimized by using a conjugate gradient method on the Grassmann manifold. Experimental results support our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Manifold learning via Multi-Penalty Regularization

Manifold regularization is an approach which exploits the geometry of the marginal distribution. The main goal of this paper is to analyze the convergence issues of such regularization algorithms in learning theory. We propose a more general multi-penalty framework and establish the optimal convergence rates under the general smoothness assumption. We study a theoretical analysis of the perform...

متن کامل

Error Estimates for Multi-Penalty Regularization under General Source Condition

In learning theory, the convergence issues of the regression problem are investigated with the least square Tikhonov regularization schemes in both the RKHS-norm and the L -norm. We consider the multi-penalized least square regularization scheme under the general source condition with the polynomial decay of the eigenvalues of the integral operator. One of the motivation for this work is to dis...

متن کامل

Manifold regularization based on Nystr{ö}m type subsampling

In this paper, we study the Nyström type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nyström type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general ...

متن کامل

Convergence Analysis of the Gaussian Regularized Shannon Sampling Formula

We consider the reconstruction of a bandlimited function from its finite localized sample data. Truncating the classical Shannon sampling series results in an unsatisfactory convergence rate due to the slow decayness of the sinc function. To overcome this drawback, a simple and highly effective method, called the Gaussian regularization of the Shannon series, was proposed in engineering and has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009