Manifold Regularization for SIR with Rate Root-n Convergence
نویسندگان
چکیده
In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projection directions of the regularized SIR are optimized by using a conjugate gradient method on the Grassmann manifold. Experimental results support our theory.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملManifold learning via Multi-Penalty Regularization
Manifold regularization is an approach which exploits the geometry of the marginal distribution. The main goal of this paper is to analyze the convergence issues of such regularization algorithms in learning theory. We propose a more general multi-penalty framework and establish the optimal convergence rates under the general smoothness assumption. We study a theoretical analysis of the perform...
متن کاملError Estimates for Multi-Penalty Regularization under General Source Condition
In learning theory, the convergence issues of the regression problem are investigated with the least square Tikhonov regularization schemes in both the RKHS-norm and the L -norm. We consider the multi-penalized least square regularization scheme under the general source condition with the polynomial decay of the eigenvalues of the integral operator. One of the motivation for this work is to dis...
متن کاملManifold regularization based on Nystr{ö}m type subsampling
In this paper, we study the Nyström type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nyström type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general ...
متن کاملConvergence Analysis of the Gaussian Regularized Shannon Sampling Formula
We consider the reconstruction of a bandlimited function from its finite localized sample data. Truncating the classical Shannon sampling series results in an unsatisfactory convergence rate due to the slow decayness of the sinc function. To overcome this drawback, a simple and highly effective method, called the Gaussian regularization of the Shannon series, was proposed in engineering and has...
متن کامل